Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Natural Product Sciences ; : 103-108, 2018.
Article in English | WPRIM | ID: wpr-741609

ABSTRACT

The usage of wild ginseng (Panax ginseng C.A. Meyer) has been limited due to short supply and high price. Therefore, sufficient production as well as efficient extraction of mountain ginseng are required for the development as products. In this study, wild ginseng adventitious root cultures were prepared for efficient production with advantages of fast growth and stable production. Treatment of methyl jasmonate (MJ) to wild ginseng adventitious root cultures increased the extraction yield and antioxidative activity. Further investigation on effect of extraction conditions suggested the importance of ethanol concentration on antioxidative activity and extraction yield of MJ-treated wild ginseng adventitious root cultures. Optimized extraction condition of MJ-treated wild ginseng adventitious root cultures for maximum extraction yield and antioxidative activity was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Extraction of 1 g MJ-treated wild ginseng adventitious root culture with 30 ml of 9% ethanol at 30 ℃ produced 310.2 mg extract with 71.0% antioxidative activity at 100 µg/ml. Taken together, MJ-treated wild ginseng adventitious root culture is valuable source for wild ginseng usage and optimized extraction condition can be used for the development of functional products or folk remedies.


Subject(s)
Ethanol , Medicine, Traditional , Panax
2.
Natural Product Sciences ; : 270-274, 2016.
Article in English | WPRIM | ID: wpr-146017

ABSTRACT

Green tea, the leaves of Camellia sinsneis (Theaceae), is generally acknowledged as the most consumed beverage with multiple pharmacological functions including antioxidant activity. This study was performed to analyze the effect of extraction conditions of green tea on its antioxidant effects using DPPH assay. Three extraction factors such as extraction solvent (EtOH, 0 – 100%), extraction time (3 – 15 min) and extraction temperature (10 – 70℃) were analyzed and optimized extraction condition for antioxidant activity of green tea extract (GTE) was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Regression analysis showed a good fit of data and the optimal conditions of extraction were found to be 57.7% EtOH, 15 min and 70℃. Under this condition, antioxidant activity of experimental data was 88.4% which was almost fit to the ideal value of 88.6%. As epigallocatechin gallate (EGCG) is known for the major ingredient for antioxidant activity of green tea, we investigated the effect of EGCG on antioxidant activity of GTE. EGCG showed antioxidant activity with the IC50 value of 4.2 µg/ml and a positive correlation was observed between EGCG content and the antioxidant activity of GTE with R2 = 0.7134. Interestingly, however, GTE with 50 – 70% antioxidant activity contain less than 1.0 µg/ml of EGCG, which is much lower than IC50 value of EGCG. Therefore, we suppose that EGCG together with other constituents contribute to antioxidant activity of GTE. Taken together, these results suggest that green tea is more beneficial than EGCG alone for antioxidant ability and optimal extraction condition of green tea will be useful for the development of food and pharmaceutical applications.


Subject(s)
Antioxidants , Beverages , Camellia , Inhibitory Concentration 50 , Tea
3.
Experimental & Molecular Medicine ; : 669-676, 2008.
Article in English | WPRIM | ID: wpr-167146

ABSTRACT

Pulse-induced permeabilization of cellular membranes, generally referred to as electroporation (EP), has been used for years as a tool to increase macromolecule uptake in tissues, including nucleic acids, for gene therapeutic applications, and this technique has been shown to result in improved immunogenicity. In this study, we assessed the utility of EP as a tool to improve the efficacy of HB-110, a novel therapeutic DNA vaccine against chronic hepatitis B, now in phase 1 of clinical study in South Korea. The potency of HB-110 in mice was shown to be improved by EP. The rapid onset of antigen expression and higher magnitude of humoral and cellular responses in electric pulse-treated mice revealed that EP may enable a substantial reduction in the dosage of DNA vaccine required to elicit a response similar in magnitude to that achievable via conventional administration. This study also showed that EP-based vaccination at 4-week-intervals elicited a cellular immune response which was about two-fold higher than the response elicited by conventional vaccination at 2-week intervals. These results may provide a rationale to reduce the clinical dose and increase the interval between the doses in the multidose vaccination schedule. Electric pulsing also elicited a more balanced immune response against four antigens expressed by HB-110: S, preS, Core, and Pol.


Subject(s)
Animals , Male , Mice , Electroporation , Hepatitis B Antigens/biosynthesis , Hepatitis B Vaccines/administration & dosage , Hepatitis B, Chronic/immunology , Immunity, Cellular , Mice, Inbred BALB C , Vaccines, DNA/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL